Significance of Vivianite Precipitation on the Mobility of Iron in Anaerobically Digested Sludge
نویسندگان
چکیده
Anaerobic digestion requires a balanced availability of micro-nutrients with ideal growth conditions to reach optimal organic degradation and biogas production. Iron is the most abundant of the essential metals in an anaerobic digester and its mobility has a strong impact on microorganisms through its own bioavailability, but also through its influence on the bioavailability of other metals. Most previous research on iron mobility in anaerobic digestion has focused on sulfide as the controlling anion because digesters traditionally are sulfide rich and phosphate poor. However, chemical phosphorus removal (CPR) at wastewater treatment works (WWTW) can elevate phosphate concentrations in the digester 10-fold or more. The goal of this research was hence to examine the accepted wisdom of iron-sulfide dominance prevailing in all anaerobic digesters and by evaluating the potential for iron phosphate formation in municipal digesters treating CPR sludge. To fulfill this aim, iron compounds were identified experimentally from full-scale digesters at WWTW with CPR and the most likely iron species identified through modeling according to their thermodynamic probability of formation under the specific environmental conditions experienced in each anaerobic digester. Experimental and modeling data were then combined to identify the main chemical reactions controlling iron mobility in those anaerobic digesters. Results show that speciation of iron in the sampled anaerobic digesters was controlled by the solid phase through a primary reaction (sulfide precipitation to form pyrite and ferrous sulfide) and secondary reaction (phosphate precipitation to form vivianite). However, iron-sulfide precipitates represented only 10–30% of the total iron in the sampled digesters, while iron-phosphate precipitates represented more than 70%. The significance of the high quantity of vivianite in these digesters is that phosphate-rich anaerobic digesters will be more iron-mobile environments than sulfide-rich digesters, with iron being more readily exchanged between the solid and liquid phases during digestion, implying a higher level of bioavailability and the tendency to interact more readily with organic and inorganic counterparts.
منابع مشابه
Vivianite as an important iron phosphate precipitate in sewage treatment plants.
Iron is an important element for modern sewage treatment, inter alia to remove phosphorus from sewage. However, phosphorus recovery from iron phosphorus containing sewage sludge, without incineration, is not yet economical. We believe, increasing the knowledge about iron-phosphorus speciation in sewage sludge can help to identify new routes for phosphorus recovery. Surplus and digested sludge o...
متن کاملRemoval of heavy metals from anaerobically digested sewage sludge by isolated indigenous iron-oxidizing bacteria.
The removal of heavy metals (Cr, Cu, Zn, Ni and Pb) from anaerobically digested sludge from the Yuen Long wastewater treatment plant, Hong Kong, has been studied in a batch system using isolated indigenous iron-oxidizing bacteria. The inoculation of indigenous iron-oxidizing bacteria and the addition of FeSO4 accelerated the solubilization of Cr, Cu, Zn, Ni and Pb from the sludge. pH of the slu...
متن کاملSolutions to a combined problem of excessive hydrogen sulfide in biogas and struvite scaling.
The Woodman Point Wastewater Treatment Plant (WWTP) in Western Australia has experienced two separate problems causing avoidable maintenance costs: the build-up of massive struvite (MgNH4PO4. 6H2O) scaling downstream of the anaerobic digester and the formation of hydrogen sulfide (H2S) levels in the digester gas to levels that compromised gas engine operation and caused high operating costs on ...
متن کاملAeration of anaerobically digested sewage sludge for COD and nitrogen removal: optimization at large-scale.
The paper will report about the experiences at an Austrian large wastewater treatment plant of 720,000 population equivalents, where anaerobically digested sewage sludge is further stabilised under aerobic conditions. Enhanced stabilisation of the anaerobically digested sludge was required at the plant in order to get a permit for landfill disposal of the dewatered stabilized sludge. By impleme...
متن کاملThe removal of nitrogen and phosphorus from reject water of municipal wastewater treatment plant using ferric and nitrate bioreductions.
Reject water, which is the liquid fraction produced after dewatering of anaerobically digested activated sludge on the municipal wastewater treatment plants (MWWTPs), contributes up to 80% of the nitrogen and phosphorus loads to the MWWTP. It was proposed to combine the removal of nitrogen from reject water using the sequential biooxidation of NH(4)(+) and bioreduction of NO(3)(-) with precipit...
متن کامل